Inhibition of major histocompatibility complex class II gene transcription by nitric oxide and antioxidants.

نویسندگان

  • Michael Grimm
  • Martin Spiecker
  • Raffaele De Caterina
  • Wee Soo Shin
  • James K Liao
چکیده

Interferon (IFN)-gamma facilitates cellular immune response, in part, by inducing the expression of major histocompatibility complex class II (MHC-II) molecules. We demonstrate that IFN-gamma induces the expression of HLA-DRA in vascular endothelial cells via mechanisms involving reactive oxygen species. IFN-gamma-induced HLA-DRA expression was inhibited by nitric oxide (NO) and antioxidants such as superoxide dismutase, catalase, pyrrolidine dithiocarbamate, and N-acetylcysteine. Nuclear run-on assays demonstrated that NO and antioxidants inhibited IFN-gamma-induced HLA-DRA gene transcription. Transient transfection studies using a fully functional HLA-DRA promoter construct ([-300]DR alpha.CAT) showed that inhibition of endogenous NO synthase activity by N(omega)-monomethyl-l-arginine or addition of exogenous hydrogen peroxide (H(2)O(2)) augmented basal and IFN-gamma-stimulated [-300]DR alpha.CAT activity. However, H(2)O(2) and N(omega)-monomethyl-l-arginine could induce HLA-DRA expression suggesting that H(2)O(2) is a necessary but not a sufficient mediator of IFN-gamma-induced HLA-DRA expression. Electrophoretic mobility shift assay and Western blotting demonstrated that NO and antioxidants had little or no effect on IFN-gamma-induced IRF-1 activation or MHC-II transactivator (CIITA) expression but did inhibit IFN-gamma-induced activation of STAT1 alpha (p91) and Y box transcription factors, NF-Y(A) and NF-Y(B). These results indicate that NO and antioxidants may attenuate vascular inflammation by antagonizing the effects of intracellular reactive oxygen species generation by IFN-gamma, which is necessary for MHC-II gene transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An antiinflammatory role for IKKβ through the inhibition of “classical” macrophage activation

The nuclear factor kappaB (NF-kappaB) pathway plays a central role in inflammation and immunity. In response to proinflammatory cytokines and pathogen-associated molecular patterns, NF-kappaB activation is controlled by IkappaB kinase (IKK)beta. Using Cre/lox-mediated gene targeting of IKKbeta, we have uncovered a tissue-specific role for IKKbeta during infection with group B streptococcus. Alt...

متن کامل

A Case of Probable MHC Class II Deficiency with Disseminated BCGitis

Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficien...

متن کامل

Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes.

Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wil...

متن کامل

Analysis of polymorphism of MHC class II BuLA DRB3 exon 2 gene in North West Iranian populations of the Water buffalo (Bubalus bubalis) through PCR-SSCP

The DRB3 gene is a highly polymorphic major histocompatibility complex (MHC) class II gene and plays an important role in variability of immune responsiveness and disease resistance. In the present study, the MHC class II DRB3 gene in water buffalo (Bubalus bubalis) populations from Northwest regions of Iran was investigated through PCR-SSCP. Genomic DNA was extracted from whole blood samples c...

متن کامل

The expression of MHC class II genes in macrophages is cell cycle dependent.

Using different drugs, we stopped the cell cycle of bone marrow-derived macrophages at different points. After IFN-gamma stimulation, macrophages arrested at the G(1) phase of the cell cycle did not increase cell surface expression of the MHC class II IA. This inhibition is specific, because, under the same conditions, IFN-gamma induces the expression of Fcgamma receptors and the inducible NO s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 29  شماره 

صفحات  -

تاریخ انتشار 2002